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Abstract—The analytical (exact in the limit) or strong (or differential) form of solutions to the bench-
mark problems of (i) axisymmetric angle-ply circular cylindrical panels of rectangular planform and
(ii) circumferentially complete circular cylindrical shells, subjected to transverse load and with §52-
type simply-supported boundary conditions prescribed at the edges, are presented. The problems
investigated, which were hitherto thought to be incapable of admitting analytical solutions, have
been solved. utilizing a recently developed novel boundary-discontinuous double Fourier series
approach, for three kinematic relations, which are extensions of those due to Sanders, Love and
Donnell to the first-order shear deformation theory (FSDT). Numerical results presented for two-
layer square antisymmetric angle-ply panels, which demonstrate good convergence, and show the
cffects of fiber orientation and thickness on the static response of these pancls, should serve as
bascline solutions (in the context of FSDT) for future comparison with various approximate weak
forms of solutions with either local (e.g. finitc element methods) or global supports (c.g. Raleigh-
Ritz, Galerkin).

1. INTRODUCTION

Analysis of laminated circular (circumferentially) complete cylindrical shells (c.g. rocket
motor cascs, submersibles, nuclear reactors, pressure vessels, pipes, tubes, cte.) and circular
cylindrical pancls (open shallow shells used in aircraft fusclages, wings, ships, roofs, etc.) is
of current interest because of their increasing use in acrospace, hydrospace, energy, chemi-
cal and other industrial applications. It is a common practice to analyze these laminated
shell structures by using such popular numerical techniques as the finite element meth-
ods (FEM), because of their inherent complexities introduced by the bending-stretching
and other coupling effects (Seide and Chaudhuri, 1987). Confidence in these approxi-
mate numerical techniques is dependent upon the closeness of agreement of the numerically
predicted displacements and stresses of certain bench-mark problems with their analytical
counterparts. Thin or moderately thick cross-ply and antisymmetric angle-ply circular
cylindrical shells and panels, with certain types of simply-supported boundary conditions,
are two excellent examples of such bench-mark problems, which have attracted considerable
attention in recent years.

Closed-form solutions have been obtained for the case of circular cylindrical shells
subjected to axisymmetric internal pressure with/without temperature changes by Zukas
and Vinson (1971), Reuter (1972), Chaudhuri et al. (1986), and Abu-Arja and Chaudhuri
(1989) and for axisymmetric buckling of such shells by Hirano (1979). Analytical (e.g.
double Fourier series, which are either exact or exact in the limit) solutions have been
presented by Stavsky and Lowey (1971), Dong and Tso (1972), Jones and Morgan (1975),
Sinha and Rath (1976), Greenberg and Stavsky (1980), Hsu er al. (1981), Soldatos and
Tzivanidis (1982), Bert and Kumar (1982) and Reddy (1984), for non-axisymmetric defor-
mation, buckling and vibration of cross-ply circular (circumferentially) complete cylindrical
shells and panels, with SS3-type [under the classification of Hoff and Rehfield (1965) and
Chaudhuri et al. (1986)] simply-supported boundary conditions prescribed at the edges.
Soldatos (1984) has used a Flugge-type theory and Galerkin's approach in solving the free
vibration problem of non-circular cross-ply cylindrical shells.
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With regard to the problems of antisymmetric angle-ply cylindrical panels, Soldatos
(1983a.b) and Whitney (1984) have resorted to Galerkin's method. Soldatos (1983b) attri-
butes the non-existence of an exact solution for an angle-ply cvlindrical panel to the com-
plexity of the geometry of a shell (as compared to a flat plate) besides the material properties,
by concluding. “'thus, for equations of motion of antisymmetric angle-ply laminated circular
cylindrical panels and shells whose geometry is more complicated an exact closed-torm
solution seems to be impossible”. While this statement does not attribute impossibility of
obtaining other types of exact (i.e. in the limit) or analytical solutions, no such solutions
have been attempted by either Soldatos or any other researcher, thus leaving a critical
analytical vacuum. Reddy (1984) has succeeded in obtaining Navier’s solution in the form
of double Fourier series to the problems of cross-ply laminated shells, and has concluded
that “Closed-form solutions for deflections and natural frequencies of simply supported,
cross-ply laminated . .. shells are derived ... . Unlike plates. antisymmetric angle-ply lami-
nated shells with simply-supported boundary conditions do not admit exact solutions. The
exact solutions presented herein for cylindrical and spherical cross-ply shells
under sinusoidal. uniformly distributed, and point loads should serve as benchmark results
for approximate methods, such as finite element and finite difference methods™. It may be
pointed out here that there appears to be some confusion or controversy with regard to the
definition of “exact solution™ in the literaturc. While expressions for eigenvalues. e.g.
natural frequencies, obtained by both Reddy (1984) and Soldatos and Tzivanidis (1982)
for cross-ply shells are in closed form, the solutions for deflection presented by the former
are definitely not in closed form. Reddy's (1984) solutions for deflection of cross-ply shells
can only be regarded as solutions of strong (or differential) form, or solutions exact in the
limit or exact in the sense of Chia (1980, p. 38) and Svilard (1974, p. 43). Chia (1980) has
stated, “The solution is said to be exact in the sense that an infinite sct of ... algebraic
equations can be truncated to obtain any desired degree of accuracy. Exact solutions will
be obtained by double Fourier serics, generalized double Fourter series and a combination
of these series ...". According to Szilard (1974), In general, there are four types of
mathematically ‘exact’ solutions ... . 1. Closed-form solution. 2 ... 3. Double trigonometric
series solution. 4. Single series solution™,

Recently, Chaudhuri (1989) has presented a novel method for obtaining an analytical
{exact in the limit or exact in the sense of Chia (1980) and Szilard (1974)} or strong form
of solution, in the form of boundary-discontinuous double Fourier series, to the problem
of a system of completely coupled lincar partial differential equations with constant
coefficients, subjected to completely coupled boundary conditions. This method (i) provides
guidance with regard to the selection of appropriate assumed double Fourier series solution
functions, depending on the coefficients of the system of governing partial differential
equations, (ii) guides in making decisions with regard to the discontinuities either in the
assumed solution functions or their first derivatives, depending on the cocthicients of the
boundary condition equations, (iii) ensures uniqueness of the solution, and finally, (iv)
leads to a highly efficicnt computational scheme in spite of the complexity of the completely
(or highly) coupled PDEs. Chaudhuri (1987, 1989) has also applied this method to inves-
tigate the general nature of these exact double Fourier series solutions in the case of
modecrately-thick doubly-curved laminated anisotropic shells of rectangular planform. Ana-
lytical solutions to the problems of antisymmetric angle-ply cylindrical panels and cir-
cumferentially complete cylindrical shells have, however, not been investigated in detail and
their numerical results are still non-existent.

The primary objective of the present study is to apply the aforementioned technique
in obtaining a unique solution to the five highly coupled second-order PDEs subjected to
highly coupled boundary conditions. This study will present (i) analytical (double Fourier
series, which are exact in the limit) or strong (or differential) forms of solutions to the
aforementioned bench-mark problems for three kinematic relations (shell theories), which
are extensions, by Bert and Kumar (1982), of those due to Donnell, Love and Sanders to
the casc of first-order shear deformation theory (FSDT) and (ii) some uscful numerical
results for antisymmetric angle-ply cylindrical panels limited to Sanders’ kinematic relations
alone, as a first step. Although the problem of doubly-curved angle-ply panels was solved
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by Chaudhuri and Abu-Arja (1988) using a preliminary version (Chaudhuri, 1987) of the
boundary-discontinuous double Fourier approach due to Chaudhuri (1989). the criteria
determining when the boundary Fourier series are needed or not needed were neither fully
understood, in the mathematical sense, by the authors at that time, nor were ever fully
investigated by such previous investigators as Goldstein (1936, 1937), Green (1944), Green
and Hearmon (1945), Whitney (1970, 1971) and Whitney and Leissa (1970). This issue has
now been completely investigated, in the mathematical sense, by Chaudhuri (1989). The
present analysis on antisymmetric angle-ply cylindrical panels and shells is, therefore, firmly
rooted to the mathematical analysis, while keeping the door open to physical interpretation
by the intuitive approach of the aforementioned earlier investigations. The numerical results
presented here are expected to serve as bench-mark solutions (in the context of FSDT) for
future comparison with various approximate weak (or integral) forms of solutions with
either local (e.g. finite element methods) or global supports (Raleigh-Ritz, Galerkin).
Definitions of strong and weak forms are available in Hughes (1987). The scope of the
present study will be limited to the type of prescribed boundary conditions (i.e. SS2)
considered by Soldatos (1983b) and Reddy (1984) for antisymmetric angle-ply panels,
although the remaining boundary conditions can be handled with almost equal ease.

2. STATEMENT OF THE PROBLEM

For a cylindrical panel shown in Fig. I, with axial and circumferential lengths, @ and
b, respectively, and radius, R, the strain—displacement relations, under FSDT (Reissner—
Mindlin hypothesis) arc

By =R XK, Ly = ESHF XN By =8V Be = 0% £ = £a+ XK, 1))
where

0 . 0 . 0 - . 0

L=y Ey= ot /R s =uys+@y—Fuy/R, s =uy,+¢;

G =t atur s Ky =@ Ky=daa: Ke =2 +6(us)—u,,)/R (2

in which a comma denotes partial ditferentiation. g, and &' (i = 1,2, 6) represent the surface-
parallel normal and shearing strain components at a parallel surface and mid-surface
respectively, while ¢, & (i = 4,5) represent the corresponding transverse shearing strain
components. x, (i = 1,2, 6) denotes the changes of curvature and twist, while i, (i = 1,2, 3)
and ¢, (/ = 1, 2) denote the displacement and rotation respectively in the ith direction. The
coeflicients (¢,.¢,) are shell theory tracers, for the extensions of Sanders’, Love's and
Donnell’s theories respectively to their FSDT counterparts (Bert and Kumar, 1982). The
equations of equilibrium are:

Fig. I. A circular cylindrical pancl.
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No+Ng2~EM/R=0. N, +6Mq /R+N:2+¢0:/R=0;
N:fR=Q 1~ Q22—q=0; M, | +M;—-Q,=0; Mg +M.,—-Q,=0 (3)

in which g is the transverse or radial distributed load. Surface-parallel stress resultants, V,,
stress couples (moment resultants), M,, and transverse shear stress resultants, Q,. are related
to the mid-surface strains. ¢, and changes of curvature and twist, x;, by

N,' = A,‘,sjo'*‘B,'jKj (’.j = l, 2.6), M,‘ = B,1810+D,‘/K, (‘-j = 1‘2. 6),
Q) = Aysed+Asses: Qr = Ayged+ Ayse0. 4)

Here A,,, B,,. D,; are extensional, coupling, and bending rigidities, respectively, and A,
(i, j = 4.5) represents transverse shear rigidities. For an antisymmetric angle-ply laminate,

Ao = Az =Aus =B\ = B2 =By, = Beg = D\, = D26 = 0. (3)

Substitution of eqns (2), (4), (5) into eqns (3) will yield five coupled partial differential
equations with constant coefficients in the following form:

(i)

dP'uy+aSu o+ auy o+ a@uy 4 aPuy HaPuy  +aP g a4 a ey

" () ) (i) " " "
+aisna+a i o Faiid  +ae, aHalid aFalid+Hdieda
+alhr @k =0 i=1,24,5 (6a)
3 1] 1 1 1 3 1 \]
d M e d N +dM s+ us+a M uy A+ d

+dV +did,  +d Ny +d Ny, = ¢ (6b)

where the superscripts of the coceflicients, i, denote the equation number. ¢ (i = 1,..., 5;
J=1,....18) are as defined in Appendix B. The five boundary conditions at an edge are
sclected to be one member from cach pair of the following

(“m Nn) = (“I‘ Nl) = (“J' Qn) = (¢m Mn) = ((bn M,) =0 atan cdgc X, = 0. (7)

The boundary conditions considered here are the same as those considered by Soldatos
(1983b) and Reddy (1984), which are termed SS2-type under the classification of Hoff and
Rehfield (1965) and Chaudhuri er al. (1986). They are prescribed as follows:

u (0, x5) = N(0, x,5) = u3(0,x,) = M,(0, x;) = $,(0,x,) =0 at theedge x, = 0. (8)

3. SOLUTION FOR CYLINDRICAL PANELS

It has been shown by Chaudhuri (1989) that selection of the assumed boundary-
discontinuous double Fourier series solution functions will depend on the governing partial
differential equations and not the boundary conditions. At stake here is the well-posedness
of the Fourier analysis, to be achieved through selection of the unknown coefficients of the
assumed double Fourier series solution functions and introduction of certain boundary-
discontinuous coefficients, so that the number of final algebraic equations become equal to
the number of unknowns to furnish a unique complete solution. The details are available
in Chaudhuri (1989) and will, in the interest of brevity, be excluded here. The solution to
the system of five coupled partial differential equations, given by eqns (6) in conjunction
with the SS2-type simply-supported boundary conditions. represented by eqns (8), will then
be assumed in the form:

wy = +ul o =dh+u ) uy=dvrul o =0 4oV da=oL+0Y  (9)
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where
k4 o
W Y. 0 = Y Y (Une Vise Xoane Vi) sin(2,,x,) cOs (B,12)
m=la=0
kA x 0 .
(od ¢ o) = T Y (Uhe Vi Xl Yira) €08 (2,5, ) sin (B,x2)
ma=0 a=1i
x x
Wy =Y Y Wi, sin(z.x,)sin(f.x2);
LERE.E R
x x
W =Y ¥ W, cos (2,x)cos (B,x:) (10)
m=0n=0
in which

o, = mula, B,=nnib. (1)

The above equations introduce (10mn+ Sm-+Sn+ 1) unknown Fourier coefficients.
The next operation will comprise ditferentiation of the assumed solution functions, which
is a necessary step before substitution into the equilibrium eqns (6). The procedure for
differentiation of the assumed double Fourier series solution functions for the most general
type of boundary condition has been described in detail by Chaudhuri (1989), the appli-
cation of which to the present problem is relatively straightforward. The illustration of the
procedure, described in Appendix A, will, in the interest of brevity of presentation, be
limited to obtaining the first partial derivatives of the assumed solution function, u'. These
two derivatives directly follow from egns (A2b), (A2c), (A8) and (A1) uand can be rewritten,
in the final form:

Wity ==Y Y Ula,sin(@,x)sin(fx;) O<x <a0<x;<bh) (120)

m=1n=i

“‘l‘.l("-l’xl) = icll + Z 5('", (M) (amxl) + 2 {l‘nU'(l‘n + é(cﬂ}'n +d06n)} cos (!‘nxl)

m= n=

+ 3 Y B Uty +dad,)cos(@ax ) cos (fxa); 0€<x,€a,0<x, b (12b)

mal o=

where
) 0, 1) foriodd
(0 = (1,0) for ieven (13)
and
4 “; u i

Cm == , (¢, b) —~ Y 1(x,,0)} cos (a,,.x,) dx, (14a)

; 4 uj 4] 1

= T ab o e (e, b)Y +ut, (. 0) ) cos (amx ) dixy. (14b)

Extension of the above procedure to the second derivatives is straightforward (Chaudhuri,
1989) and will yield :
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l x i x x .. )
ulll.ll(xlv-“l) = By Z a, sin (ﬂnxl)+ Z Z (_I;L':n+an}'m+bnom)

“m=| mal r=l

x cos (2,,.X,)sin(f,x,) (15a)

1 = . Ed T
ulll‘ll(-\‘l' _\'.':) = - '2' Z X Crm SIN (’1,,,.\'1) - Z Z im(ﬂn U:n +Cm7'n +d,,,5,,)
me= |

m=1n=|

xsin (%,,x,) cos (f,x;) (15b)
"Ill.::(-ﬁ-xz) = - Z {ﬂn:U{)In+ %ﬂn(007n+d0ﬁn)} sin (f,x,) — Z Z

n=1 m=1n=1

X {an U::n +ﬁn(cm.l'n +dm6n)} cos (’1,,,.\'| ) Sin (ﬁn-tZ) ( ISC)

where
4 b
a, = J) J:) {“III. 1(a, x;)— “lll. (0, -‘:)} sin (B,x;)dx; (16a)
4 b
b, = — ab {“Inl.u(a» ) +ut (0, x2)} sin (f,x;)dx,. (16b)
0

A similar procedure applied to the other assumed functions leads to 16 more constants: e,
Sav s Jur My My qa. Fau fOr €ach n, the four pairs being associated with Y, u |, ¢, ¢%,.
respectively along the boundaries x, = 0,a; and g,,. Ay Kpps ls Opgs Pons Sms L fOF €aCh M,
the four pairs being associated with Y ,, u!f,, ¢',. #Y, respectivcly along the boundaries
x; = 0,h. It may be noted that the first and sccond derivatives of the first parts of the
assumed solution functions—u! (i = ,2,3) and ¢! (i = 1, 2)—can be obtained by termwisc
diffcrentiation (Chaudhuri, 1989). The details will be omitted here in the interest of brevity of
presentation. The above step introduces (10m+ 10n + 12) additional unknown cocflicients,
which ask for as many equations, to be supplied by the boundary conditions to be presented
later. 1t will be interesting to offer the following physical explanation of the above mathe-
matical operations, as applied to the present problem:

The first parts of the assumed solution functions «! (i = 1,2,3) and ¢! (i = 1,2) which
are the same as those assumed by Reddy (1984) as complete solutions, satisfy the prescribed
boundary conditions, given by eqns (8), u priori. Since they do not violate any physical
conditions at the boundary, their partial derivatives can be obtained by termwise differ-
entiation. The second parts by themselves do not satisfy the prescribed boundary conditions.
Hence, according to Chaudhuri’s (1989) method, they are forced to satisfy the prescribed
boundary conditions given by eqns (8). Still, discontinuities may arise out of violation
of other physical conditions at certain boundaries by these functions and/or their first
derivative(s). [n such events, termwise differentiation of the assumed functions and/or their
first partial derivative(s) concerned may not be valid, as stipulated by Green (1944), Green
and Hearmon (1945), Winslow (1951), Whitney and Leissa (1969), Whitney (1971) and
Chaudhuri (1989). The corresponding first or second partial derivative(s) must be obtained
by expanding them in the form of double Fourier series, in a manner suggested by the
above investigators. This will be illustrated for the case of the two first partial derivatives
of the assumed solution function, «!, which does not automatically satisfy the prescribed
geometric boundary conditions at the edges x, = 0,a; these are then satisfied by force,
which will yield additional equations arising out of satisfying boundary conditions to be
described later. 4! however, vanishes at the edges x, = 0, 4, which is a violation, because
at these edges u, = u, and N, = N, cannot, according to the variational principle, be
simultancously prescribed. Therefore, ul, cannot be obtained by termwise differentiation,
although u!!, can be obtained that way.

Expansion of the uniformly distributed transverse load into a double Fourier series

9= i i Grnn SIN (2,1 ) sIN (B, X3) (17
me=| =
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and substitution of the assumed solution functions and their appropriate partial derivatives

into eqns (6a) will vield :

Z Z sin (x,,x,) cos (B,x: D fay —2iad ﬂ" (”)L/,,,,.—I ﬁam +Bam W

m=1n=1

(13) 'l (3] () tr}
—1mﬁ (l' "t )mn(aI'S—lmalb ﬂ a’ mﬁ (' mna‘( X lenaS'

— 20,08 + VN (@) — 220 = BrAY) — 2l — X fuOm @ + G Tady

i N )
+ hm() (1“’ ™ u/:rlma(” + \’rlv!n (ll(” 1 (I l 2 _ﬁ a(” - 1mmn}'m‘1(l‘)2 - xrnnnom“llll

() S A0 n 4 G, 51
+ Om7n l’4 +pm()n“‘l'4 - amﬂn Ymn(l(ll7 X al 7sm Tn—%nd I'Tt ()n} =0

ﬂM.‘i

t (1) 2 t )yl (i (1) () 20
+ ’\,mn(a lll — X, l" ﬂnu, xmﬁ a‘ Ymn Umn(a “'1,,,(14’ —ﬁna; )

a () 5 () v o (e} () (13} {0 » ()
+(’nlm“." +hn()m“2' —Bn(m/n“; —_ﬂn(!m(s ay, —ay amﬁn mn_a7 ﬂn(nl'm =y ﬂn/;l(sm

) " () Il (i) “ 0] N 41
—,fnu‘llo W mn amlin“ l’]‘vnm a ll‘ﬁn,"rvlm —d ll.‘ﬂn"nom + Ymn

) ) (0 (o
x (ad{y —aialh = BRalh) 4+ @y, alih +r,0,d8h = BS, ek = Bat,0,d} =0
r

. i
Z sin (Inl'\.l ) : (U‘| - ama("))umﬂ + Ym()(“‘l‘ am“‘l’:» - l’am(mu(\‘) + P (“(” -~ A, a((:’

m- |

i s oar pplt) 1 "N {r} (1) (i (1)
= 3% CoYmle — Zam‘/(lomuﬁ + ’(/m“‘( -, I'le)a + Ym(l(“ll _1 m1 2

- %um"‘llymulll)l - éam"()().m“(l‘)l + EU,,,(I‘{,)‘ - éll‘;%a,,,.\',,,} = 0

e

Z $In (f,2) (B 0,8 = Bd) + X4, () = Bia) + U () = BRa) + Sa,a

n=t
1. N () 1 N ) (l) ’|| 1,00 1,000
- Z‘l)l‘ul'nul - Zdoﬁn‘)n“ —”ualn un = 205 /;nun - Zul‘\/”n'nn

(1) 20 (IR U R T | Nl
u,.(U' =B di)+ “In“l‘h - :/‘n-\u/nan'x - :loﬂ,.()n” I‘Hj' =0

Z €05 (%X ) 5in (B,X2) { — 2, 8,05 Ulpr + Vo (0 —alal — B1d) + 2,8 W),

(18a)

(18b)

(18¢)

(18d)

where the superscript § takes on the values i = 1, 2,4 and 5. Similar operation on eqn (6b)

and substitution of eqn (17) will yicld:

o . . 3 I 3 by
Y ¥ sin(a,x)sin (B — 8,4 Ul — 0, a3V, + (a8 —andd — B1aYW

me=1n=|

1 (3 i (3) gl (3) gt k] i
- am“‘) “/mn —/‘,,U Ymn - 1,,,(1] Umn - [;11“4 an + anlﬂ (l( Li/}nn

—/} al() 'Y}nn 1m“l I’ yrlrsn} = Z Z qmn Sin (1mxl ) Sin (/;nxl)

m«=l a=l

Z Z o8 (%, ) €08 (B,X2) {2, " Ul + Bod PV + 2, Bad W+ Ba D X1,

-l n=l
+ o, d VY, + B, U+ 0y, +dVd, S, + 2,00 Vi +aW e im +ai 126,
+ (@ = 2pd = B Y Wi+ iy 7 ds + 5,00 + K, y,dd +1,0,a5”

+a,a" X0, +aVm,y, +dnd, + B.aR Y, +a¥s, . +a\¥t,0,) =0

.

- 3 1 \ 3 3
Z Cos (Im"' 1 ) {1m“(l ,Um() +1mul i Ym() + ’Cm ) + [+ % a‘ ! Vllvlt() + ’a(J )eO/m + %a()”foém

|
(I} (1 Al ()] 1 (. 3 i
+ ((15 1maﬁ ) L’/m() + *’n Im“b + Jﬂo g ia‘x )l\m +1,y,(l(q )X,,,n

N 3
+ La" myy, + La¥nyd, + Ldlls,,) =0

(19a)

(19b)

(19¢)
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1
Z cos ([jn-‘:l){ﬁnu(-l”l !ln+ﬂ (1'[ X l)n+ﬂ al"h(' (rv+ ’a(‘“CO n ’a’“d 5 + ‘a(“) £
n=1

(" = BB, + La i + La kg + a0+ dm, + B.d Y

+4a sy, + LdiVe, o, =0 (19d)

3
aVey+ taley +ad W+ La Vi + LalPky + Ya my + Las, = 0. (19¢)

Equating the coefficients of the trigonometric functions of eqns (18) and (19) will
contribute [0mn+ Sm+5n+ 1 linear algebraic equations. The remaining 10m+ 10n+ 12
linear algebraic equations are supplied by the geometric and natural boundary conditions,
given by eqns (8). For example, satisfaction of the geometric boundary conditions
1,(0.x.) = u,(a.x;) = 0 and equating the coefficients of sin (f,.x.) will contribute the fol-
lowing 2n linear algebraic equations:

H

Y 8 UN, =0 U+ Z v U =0: forall n=1.2..... (20)

mo | mo= |

The remaining 10m+ 81+ 12 equations are contributed by the rest of the boundary
conditions of eqns (8). Theretore, depending on the desired degree of accuracy, a finite set
of 10mn+15m+ 151+ 13 linear algebruic equations in as many unknowns nceds to be
solwul ln the interest of computational efticiency, eqns (18), (19) are solved for U,,,, V...
Wi X Y. i =1 I1in terms of the constant cocflicients a,. b, ¢4, d,,, ctc. which are
then .\llh.\tlllll\.d into the equations arising out of the boundary conditions [e.g. eqns (20))
finally yiclding a,, b,. ¢,.. d,. cte. following an approach suggested by Chaudhuri (1989).
This operation will reduce the size of the problem under consideration by an order of
magnitude, finally resulting in 10m-+ 100+ 12 lincar algebraic cquations in as many
unknowns, the solutions of which are relatively speaking trivial.,

It may be noted that for an antisymmetric angle-ply plate (R = o),

(1) (1 ] th () (h (3 (1) (2 (3 (1)

d=dt=dv = d =d =4l dV =d\ =daP = dV =dy" = ol = o)
2 2 4 4 s 5 2 2 3 2
=dl =P =d{ = =M = dV = 0P =P =d\Y = dV = dl?
U | B} B .} R () R AP | B
=dy) =ds" = dy) =d)) =d\y =dy) =0 (21)

Substitution of eqn (21) into eqns (6) will reduce them to their flat plate counterparts.
Furthermore, substitution of eqn (21) into the final solutions [eqns (18)—(20)] can be shown
to yicld the corresponding flat plate solution presented by Bert and Chen (1978) and Reddy
(1984). Substitution of

2 2 > ) 2
dV =a) =d? =d' =aP =dl) =dP =\ =dV = dl) =a\" = al) = a¥
=d =d¥ =d\y =d\I =4’ =d¥ =dP =Y =d =4}
IS R T S T
= a), ayy = U 0 (22)

will reduce egns (6) to their counterparts for a homogencous orthotropic plate—eqns (8),
(A1) of Chaudhuri and Kabir (1989). who have presented solutions only for the SS4-type
simply-supported and C4-type clamped boundary conditions. However, solution in the
form of lincar algebraic equations for the SS4-type boundary conditions can easily be
modified to obtain their SS2-type counterparts, which can be shown to be identical to those
obtained by substitution of eqn (22) into eqns {18)—(20). the details of which will be omitted
here in the interest of brevity. This will be further dealt with in Section 5.
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4. SOLUTION FOR A CIRCUMFERENTIALLY COMPLETE CYLINDRICAL SHELL

For a circumferentially complete circular cylindrical shell, the x, coordinate is replaced
by the angular coordinate, 6, where x, = R. The resulting governing partial differential
equations are similar to eqns (6). The assumed solution functions are still given by eqns
(9). (10) with the argument §,x, replaced by nf, where n is as before, an integer. Since the
assumed trigonometric functions of nf automatically satisfy the closure condition of a
circumferentially complete cylindrical shell. the partial derivatives of all the assumed
solution functions with respect to 6 can be obtained by termwise differentiation. Only the
assumed solution functions with superscript I, and/or their first partial derivatives with
respect to x; may have edge discontinuities, in which case termwise differentiation will no
longer be valid. This will be illustrated for the partial derivatives u\', and u\,, as before:

W, 0)=—3% Y Ula,sin(z,x)sin(nf); (0<x, <a) (23a)

m=1n=1

l x s T . .
“III.I 1 (" 1s 0) = ; Z a, Sin (nﬂ) + Z Z (_ ar:v Urlr!n + (479 2 + bném)cos (1,,,.'( I) sin (n())
-m= 1

m=|1n=1l
(23b)

Comparison with the preceding section will reveal that all the unknown coefficients
with subscript m, ¢.g. ¢,,. d,,. will vanish in the case of a circumferentially complete circular
cylindrical shell, Following an identical procedure as in the preceding section, a finite set
of 10mn + Sm+ Sn+ 7 equations in terms of the identical number of unknowns is generated.
Following the procedure given by Chaudhuri (1989), these are reduced to a system of
Sm + 5n+ 6 lincar algebraic cquations in as many unknowns, a,, b,, . .., which can be casily
solved.

5. NUMERICAL RESULTS AND DISCUSSIONS

The present study will investigate, as an example, a two-layer antisymmetric angle-ply
moderately-thick cylindrical panel of square planform (« = b) with fiber orientation of
-(0/0. The layers are of equal thickness. The length, «, and the mean radius, R, of the
cylindrical panel are 812.8 mm (32 in.) and 2438 mm (96 in.), respectively. The uniformly
distributed pressure, ¢, is 0.6895 GPa (100 ksi). E,\(=E,) and E,(=E;), Young’s moduli
of a layer in the directions parallel and transverse to the fiber direction, are 172.4 and 6.895
GPa (25,000 and 1000 ksi), respectively. The shear modulus G,y (=Gyr) is assumed to be
equal to 3.448 GPa (500 ksi). The shear moduli, G5 and G (=Gyy), are assumed to be
the same in the case of highly crystalline graphite fiber-reinforced composites. The major
Poisson’s ratio, v, (=v.r), is taken equal to 0.25. Sanders’ kinematic relations, extended
to FSDT, have been used in the computation. This example is selected, because analytical
solutions for the corresponding spherical panels of otherwise identical material and geo-
metric parameters have recently become available (Chaudhuri and Abu-Arja, 1988). The
following non-dimensionalized quantities are defined :

ur=320E.h*u,/(ga’); i=1,2; ut* = 10ut
ul = 320E:h'us/(qa’); #% =104,
M¥=1024M,/(qa’); i=1,2. (249)

Table | presents a convergence study of u¥, ut, ¢, M7 for various aspect ratios, a/h, and
fiber orientation angles, . «3 and M ¥ are computed at the center of the panel, while u? and
¢, arc computed at the mid-points of the two sides, (a/2,0) and (0, b/2), respectively. It
may be noted that not only the side-to-thickness ratio, a/h, but also { plays a role in the
convergence of displacements, rotations and bending moments. Convergence rates of u?,
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Table 1. Convergence of u? (at the center), uf (at x, = a2, x. =0). ¢, (at x, = 0. x, = »2), and
M * (at the center) for various aspect ratios. u.A. and fiber orientation angle,

a 0 223
ah m=n 4 6 8 4 6 8

ut 10 2.708 2.738 2737 3.505 3.547 3.548

20 1.896 1.923 1924 2441 2484 2.496
ut 10 0 0 0 1.725 1.754 1.762

20 0 0 0 1.299 1.357 1.367
&, 10 1912 1.932 1.932 2979 3.009 3019

20 13.75 13.98 13.99 19.05 19.44 19.57
Mt 10 1233 125.2 1249 79.63 RI.78 81.23

20 110.0 123 112.0 62.25 64.59 64.30

¢ .. M*are similar to those of ut, ¢, and M ¥, respectively, and hence these are not shown
here. The convergences for the displacements and rotations of two moderately-thick cyl-
indrical panels shown in Table | are reasonably rapid and may be regarded monotonic.
The results for the special case of homogeneous orthotropic shells (f = 0 ') compare fav-
orably well with those obtained using an extension of the approach presented by Chaudhuri
and Kabir (1989) to the casc of SS2-type boundary conditions. These results testify to the
validity of the analytical approach and the accuracy of the numerical results. It may be
noted that the convergence for the moment, MY, exhibits bounded oscillation, which is
acceptable according to the theory of Fourier series, as expounded by Hobson (1926). The
amplitude ot oscillation, however, decreases with the increase of the number of terms, while
the mean value increases, and the amplitude of oscillation serves as an error norm. This
phenomenon has also been observed by Chaudhurt and Kabir (1989). Numerical results
that are presented below have been obtained by using m = n = 8,

Figures 2 and 3 show the variation of the non-dimensionalized displacements, rotations
and moments along the centerline, x, = b/2, of a moderately-thick cylindrical panel
(afh = 10) with § = 45", Figure 4 exhibits the variation with the fiber orientation angle, 0,
of the non-dimensionalized transverse displacement, u%, at the center (4/2, b/2) ; the surface-
parallel displacement, u?, and the rotation, ¢., at the mid-point of a side parallel to the x,-
axis, (¢/2,0); and the surfuce-parallel displacement, #%, and the rotation, ¢, at the mid-
point of a side parallel to the x,-axis, (0,4/2). The variation of the central moments with
fiber orientation angle, @, is presented in Fig. 5. It may be noted that the transverse
displacement, w, and the bending moment, M |, are symmetric with respect to the centerline

R e,
—_——— U, —— e
-
3F
2k 7
. ~
B N
1+ ,I ~. \\
NN
— N
0 0 \. N —
025 . 05N_075 /10
. \ . !
L x,/a \\\_ %
A
-2p N
Ll

Fig. 2. Variation of displacements and rotations along the center hine, x, = 5,2, of a cylindrical
panel.
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Fig. 3. Variation of bending moments along the center line, x,; = b/2. of a cylindrical panel.
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Fig. 4. Variation of displacements and rotations with the fiber orientation angle, a.

150
125
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Fig. 5. Variation of bending moments with the fiber orientation angle, 7.

x, = a/2, while the surface-parallel displacements and rotations are antisymmetric with
respect to the same. Similarity of these plots to their independently computed spherical {see
Figs 2-5, Chaudhuri and Abu-Arja (1988)] counterparts testifies to the accuracy of both
the sets of results. Currently unavailable numerical results, on (i) comparison with other
shell theories (e.g. Donnell and Love), (ii) comparison of free vibration results with those
of Soldatos (1987) and Kabir and Chaudhuri (1991), and (iii) circumferentially complete
cylindrical shells, will be published in forthcoming papers.
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6. CONCLUSIONS

The analytical (exact in the limit) or strong (or differential) forms of solutions to
the problems of moderately-thick antisymmetric angle-ply circular cylindrical panels and
circumferentially complete circular cylindnical shells have been obtained utilizing a recently
developed novel boundary-discontinuous double Fourier series approach. This method
factlitates the well-posedness of the Fourier analysis through selection of the unknown
coeflicients of the assumed double Fourier series solution functions and introduction of
boundary-discontinuous coefficients, so that the number of final algebraic equations become
equal to the number of unknowns to furnish a unique complete solution. The two bench-
mark problems investigated here were hitherto considered by the researchers in the field to
be incapable of admitting analytical solutions, which are expected to serve as baselines (in
the context of FSDT) for future comparison with those obtained by such popular numerical
techniques as the finite element methods. Analytical solutions have been obtained here for
three kinematic relations, which are extensions of those due to Sanders. Love and Donnell
to the first-order shear deformation theory (FSDT). Numerical results, that have been
presented for two-layer antisymmetric angle-ply cylindrical panels of square planform
utilizing the extended version of Sanders’ kinematic relations. demonstrate good conver-
gencee, and also the effects of side-to-thickness ratio and fiber orientation angle on the static
response of these pancls. Extension of the approach presented herein to (1) include the effect
of boundary constraints, (it) the problem of free vibration and (i) other types of laminated
shells, and currently unavailable numerical results, on (i) comparison with other shell
theories (c.g. Donnell and Love), (ii) for free vibration problems and (iii) circumtcrentially
complete cylindrical shells, will be published in forthcoming papers.
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APPENDIX A

The differentiation of full-range double Fourier series

Essential principles of differentiation have been expounded by Hobson in his classic volume (1926) on the
subject and reviewed by Winslow (1951), in the context of ordinary Fourier series. Extension of the same to the
case of double Fourier series has been treated by Chaudhuri (1989).

In general, the series obtained by differentiating a convergent double Fourier series, representing a function
Fix,,x,), is not convergent ; neither is the series so obtained necessarily the Fourier series corresponding to the
particular partial derivative of F(x,,x,). Let F(x), x,) be a bounded function and be piccewise continuous (i.c.
continuous except for a finite number of ordinary discontinuities) ; let it also be ussumed that the partial derivatives,
F(x.x,), i = 1,2 have a Lebesgue integral in the domain (—a,d) x (—b,b) and that if it has lines of infinite
discontinuity (e.g. Dirac Delta function), such lines form a reducible set. This is consistent with there being a set
of fines of zero measure at which F (x,, x,) has no definite value.

We consider as an example wlf (v, x,), which, as defined in eqns (10), is an even function with respect to x,
and an odd function with respect to x,,

Wi, ~x;) = "“11'(-\'1--":) = ‘"lll("-‘h-‘:)- (Al)

The full-range double Fourier series expansion for the function and its two first partial derivatives are as follows:

w(x, x,) = iu i U, cos (x,,x,) sin (f,x,) (A2a)
a0 A
u ((x,. %) = i' il BY sin (x2,.x,) sin (f.x,) (A2b)
Wix, xy) = }io ian,',,, cos (2,.x,) cos (B.x,) (Ac)
wherein
Ul = ulhj“, Jﬁ uf(x,. x;) cos (2%, ) sin (B.x,)dx, dxy for mon=1,2,...,00 (A3a)

U

o (.
J J‘ Wi(x,. xy)sin(f.xy)dy, dx, for n=1.2,....0 (A3b)
-ua -k
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I
Bl:a?;;. J' Wl (L sinda, ) singfxn)dy, de;, for ma=1.2...,x (Alc)
i1 l
ch =;— u, AxLxa)eos(x,x)cos (f,x,)dx, dx. for mon=1.2,..., x (A3d)
i
= 5 J. W (x xodeos{Bxsidy, dy, for =12 .. (Ale)
i e
l it
ch, = 5 tt._;(.r,.x:)cos(z,,,x.)dx. dv, for m=1.2.....x (A3f)
"—[ﬁ 1 (x,. x.)dx, dx A3
143 —4“& » _hut_: RITR S Btk ( ~g)

Integration by parts of r.h.s. of eqn (A3a) will yield the following:

B“” {&}+£

s ‘CVH
I,,J‘ [Z {1l (=0, %) =l (x )y +0.x;) | sin (1,,,,\‘;,,)}

d=}

xsin(fa)dy. for mn=12.....¢c (Ada)

cho=pU & “';;J‘“d e b =01 =l by, ~h+0) (= 1) cos(x,,x,) dx + :Ihj-',, :’i: tll vy, x0—O)
iy v+ M sin(f e dcos (rady, for mon=1.2,. ., (Adb}
= f’;ltf*v J\"“ Wliv b =0) ~ull (v, =b+D)} cos (v Wy, for m= 12, .. x (A4)
o= But, J‘;i,J‘:fft';’(r‘.f’-{};—u';'(.\u.-—fs+0)§~(—!)”dx. for m=1,. ., P (Add)
Cho =4(1’hf (v, b= 0) =y, =b+0) dy, (Ade)

d™ 0= 1,2, Inegns (Ada), (Adb) represents the number of discontinuities in the direction, v,

it is worthwhile to draw attention to a theorem [see Hobson (1926) and Chaudhuri (1989)] which implies
that if a function Fx,, x,) is an odd function of x, i = 1,2, represented by a full-range double Fourier series in
the domain (—a.a) x (— b, h), termwise partial ditferentiation of the Fourier series with respect to v, does not
represent the fiest partial derivative F (v, x,) unless (i) F (x,.x,y) is continuous in the interior of the above
domain, and (i)

Fla—0,x3) = F(=a+0,x) =0 for i=1land/or F(x,.b-0)=F(x,,-b+0) for i=2. (A5

In the case of an even function, condition (i) will suftice. This is clearly true for «\'{x,, x,) and its first partial
derivatives, as is evident from egns (A4d).

Differentiation of half-range double Fourier series

The present solution, e.g. w'f(x,, X,) [see eqns (10), is represented by double Fourier series in the domain
(0, 4) x (0, b), the lengths of the intervals in the directions, x, and x,, being one-half of the full runges of intervals
of periudicity, 2a and 25, respectively. 1''(x,, x,), in addition to being an even function of x| and an odd function
of x, as stated carlier, is also continuous in the interior of the domain (0, 4) x (0 b}, and does not vanish at the
edges, xy = 0,h. The half-range double Fourier series representation for o {x,.x,) and its first two partial
derivatives are given by eyns (Al}), wherein

Ul = (;2 J: J:' wWiny, xa)cos (2,6, ) sin(B,x ) dy, dyy, for mon =12, % (Abu)
Bl = ;hﬁ ﬁ' a(xy x)sin{x, 1) sin{f, ) de, dxy, for mon=12,..., % (A6b)
cl, = :"’J: J:: uf (v, g eos (xavy)cos () dyy dyy, for o men = 12000 « (A6C)
chy = %J‘” \ ul{x, ) cos {2, X,y dy, dy, for m=1,....% (A6d)

4 [a fh
ch = ;},J J W (x) xcos(fox)dy, dyy for =1 2. .. X (A6e)
¢ 0w ju
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l o ',
o = ;’—,j j u! S (x, %) dx, dx,. (A6f)

i o

Substitution of
d¥"=1: x,=0 and u«'(0-0.x.) = u!'(0+0,x,) (A7)
into eqn (Ada) will yield
B.. = —-1,UY. (A8)
which implies that the first partial derivative, 4! (x,.x,). can be obtained by termwise differentiation of the half-
range Fourier series expansion of u)(x,..x;). represented by eqns (Ala). (A6a). However. the other first partial
derivative, u! .(x,, x,). cannot be represented by the termwise differentiation of the series, given by eqns (Ala)
and (A6a), because u) . (x,. x.) has ordinary discontinuity at the line x. = 0 and also because
Wl (x,, h=0) # u'(x,. —b+0) £ 0. (A9)
The Fourier coeflicients for «!f ;(x,. x;) must then be obtained by substituting in eqns (A4)

d¥ =11 x,; =0 and ulix,. —h+0) = —u(x, h=0); uf(x,.0-0) = —ul!(x,.0+0) (A10)

which will finally yield

4 [
cl =gt + TI;J Ll b= =" —df (X, 04+0)! cos(x, v ) dx, for mon=12....,% (Alla)
[¢ W
3 [
Cho = 8,00, + ‘;,J (e b =0y =l (6.0 £ 0)) cos (2,0 )y, for m=1.2...., r (ALLb)
0
2 "
ch o= ”’J Ul (v b =0) =1l (6,0 ) cos (1, x ) dy, for n= 1,2, ., (Allc)
[} 0
e
Y, :uh'[ N b =0) = (v 0+ D) dy. (Alld)
1)

APPENDIX B

Definition of certain constants
The non-zero constants referred to in egn (6) are written as follows:

dV = A d = =26 B LR A = d = A+ CID R A = aY! =B R,
dM = d? = A Ay —EIDWRY L AN = dP = —EGBLR W) =d\Y = A,,/R;
dig = —dl =dy = —a\ = —EBWRTD d = = 28,
dii=dl) = —a\) = =i =l = —=dP" = d\ = —d) = =E DR A =dd = dY = = By,
Y =d\d =d" = = Byt 0\ = —FALRY A = 208 JR ) = Ay
did =" = (An+a A Ry dd =\ = AR Y = dt =28, o\ = AR
dl =d) =a =dl = Ay dM =l =dl) = al = A ) =) =dly) = al = Bu R,

4 _ . oY . 4) 4 . s
dYy =Dy di=d\d =Dy 4 =\ =D+ Do d\\ = D,y (BY)



